Inductor

From Amateur Radio Wiki
Revision as of 01:25, 9 March 2008 by TimVK4YEH (talk | contribs) (added general info + formulae copied from wikipedia)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Inductance

Inductance (L), measured in henries (H) is the effect which results from the magnetic field around a current-carrying conductor. Current through the conductor creates a magnetic flux proportional to the current. A change in this current creates a change in magnetic flux that, in turn, generates an electromotive force (EMF) that acts to oppose this change in current. Inductance is a measure of the amount of EMF generated for a unit change in current.


Inductor formulae

Construction Formula Dimensions
Cylindrical coil <math>L=\frac{\mu_0\mu_rN^2A}{l}</math>
  • L = inductance in henries (H)
  • μ0 = permeability of free space = 4<math>\pi</math> × 10-7 H/m
  • μr = Relative permeability of core material
  • N = number of turns
  • A = area of cross-section of the coil in square metres (m2)
  • l = length of coil in metres (m)
Straight wire conductor <math>L = l\left(\ln\frac{4l}{d}-1\right) \cdot 200 \times 10^{-9}</math>
  • L = inductance (H)
  • l = length of conductor (m)
  • d = diameter of conductor (m)
<math>L = 5.08 \cdot l\left(\ln\frac{4l}{d}-1\right)</math>
  • L = inductance (nH)
  • l = length of conductor (in)
  • d = diameter of conductor (in)
Short air-core cylindrical coil <math>L=\frac{r^2N^2}{9r+10l}</math>
  • L = inductance (µH)
  • r = outer radius of coil (in)
  • l = length of coil (in)
  • N = number of turns
Multilayer air-core coil <math>L = \frac{0.8r^2N^2}{6r+9l+10d}</math>
  • L = inductance (µH)
  • r = mean radius of coil (in)
  • l = physical length of coil winding (in)
  • N = number of turns
  • d = depth of coil (outer radius minus inner radius) (in)
Flat spiral air-core coil <math>L=\frac{r^2N^2}{(2r+2.8d) \times 10^5}</math>
  • L = inductance (H)
  • r = mean radius of coil (m)
  • N = number of turns
  • d = depth of coil (outer radius minus inner radius) (m)
<math>L=\frac{r^2N^2}{8r+11d}</math>
  • L = inductance (µH)
  • r = mean radius of coil (in)
  • N = number of turns
  • d = depth of coil (outer radius minus inner radius) (in)
Toroidal core (circular cross-section) <math>L=\mu_0\mu_r\frac{N^2r^2}{D}</math>
  • L = inductance (H)
  • μ0 = permeability free space = 4<math>\pi</math> × 10-7 H/m
  • μr = relative permeability of core material
  • N = number of turns
  • r = radius of coil winding (m)
  • D = overall diameter of toroid (m)